High-Throughput Automatic Training System for Odor-Based Learned Behaviors in Head-Fixed Mice
نویسندگان
چکیده
Understanding neuronal mechanisms of learned behaviors requires efficient behavioral assays. We designed a high-throughput automatic training system (HATS) for olfactory behaviors in head-fixed mice. The hardware and software were constructed to enable automatic training with minimal human intervention. The integrated system was composed of customized 3D-printing supporting components, an odor-delivery unit with fast response, Arduino based hardware-controlling and data-acquisition unit. Furthermore, the customized software was designed to enable automatic training in all training phases, including lick-teaching, shaping and learning. Using HATS, we trained mice to perform delayed non-match to sample (DNMS), delayed paired association (DPA), Go/No-go (GNG), and GNG reversal tasks. These tasks probed cognitive functions including sensory discrimination, working memory, decision making and cognitive flexibility. Mice reached stable levels of performance within several days in the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore greatly enhanced the experimental efficiency. Combined with causal perturbation and activity recording techniques, HATS can greatly facilitate our understanding of the neural-circuitry mechanisms underlying learned behaviors.
منابع مشابه
Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor-danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfacto...
متن کاملProcedures for Behavioral Experiments in Head-Fixed Mice
The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilit...
متن کاملVision-Based Recognition of Mice Home-Cage Behaviors
We describe a trainable computer vision system enabling the automated analysis of complex mouse behaviors. We also collect and manually annotate a very large video database used for training and testing the system. Our system performs on par with human scoring, as measured from the ground-truth manual annotations. Our video-based software should complement existing sensor based automated approa...
متن کاملSimilar Odor Discrimination Behavior in Head-Restrained and Freely Moving Mice
A major challenge in neuroscience is relating neuronal activity to animal behavior. In olfaction limited techniques are available for these correlation studies in freely moving animals. To solve this problem, we developed an olfactory behavioral assay in head-restrained mice where we can monitor behavioral responses with high temporal precision. Mice were trained on a go/no-go operant condition...
متن کاملNatural whisker-guided behavior by head-fixed mice in tactile virtual reality.
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018